Maximal Binary Matrices and Sum of Two Squares

By C. H. Yang

Abstract. A maximal (+1, -1)-matrix of order 66 is constructed by a method of matching two finite sequences. This method also produced many new designs for maximal (+1, -1)-matrices of order 42 and new designs for a family of *H*-matrices of order 26.2ⁿ. A nonexistence proof for a (*)-type *H*-matrix of order 36, consequently for Golay complementary sequences of length 18, is also given.

Let *M* be a $2n \times 2n$ (+1, -1)-matrix, then the absolute value of det *M* is equal to or less than μ_{2n} , where $\mu_{2n} = (2n)^n$, if *n* is even; and $\mu_{2n} = 2^n(2n-1)(n-1)^{n-1}$, if *n* is odd (see [1], [2] and their references).

When *n* is even and the absolute value of det *M* is equal to μ_{2n} , then the matrix *M* is called a nontrivial Hadamard matrix or *H*-matrix. Another characterization of an *H*-matrix *M* of order *m* is that it satisfies $MM^T = mI_m$, where I_m is the $m \times m$ identity matrix, *T* indicates the transposed matrix. (*m* must be equal to 1, 2, or 4n.)

A sufficient condition for (+1, -1)-matrix M of order 2n being maximal is that the following condition holds:

(1)
$$MM^{T} = \begin{bmatrix} P_{n} & 0 \\ 0 & P_{n} \end{bmatrix},$$

where $P_n = 2nI_n$, when *n* is even (i.e. when *M* is an *H*-matrix); and $P_n = (2n - 2)I_n + 2J_n$, when *n* is odd, J_n is the $n \times n$ matrix whose every entry is 1.

When n is odd, such maximal (+1, -1)-matrices M_{2n} satisfying the condition (1) have been known for $1 \le n \le 31$, except n = 11, 17, and 29 (see [1], [2], and [4]). Such maximal matrices M_{2n} can be constructed by the following standard form:

(*)
$$M_{2n} = \begin{bmatrix} A & B \\ & \\ -B^T & A^T \end{bmatrix},$$

where A and B are $n \times n$ circulant matrices with entries 1 or -1.

For maximal matrices M_{2n} of type (*), the condition (1) is equivalent to

$$AA^T + BB^T = P_n.$$

Let (a_k) and (b_k) , $0 \le k \le n-1$, be, respectively, the first row entries of matrices A and B, then the condition (2) is also equivalent to each of the following conditions (3) and (4) (see [4], [5]).

Received February 25, 1974; revised March 18, 1974 and February 25, 1975.

AMS (MOS) subject classifications (1970). Primary 05B20, 05A19, 62K05.

(3)
$$|A(w)|^2 + |B(w)|^2 = P_n(w),$$

where $A(w) = \sum_{k=0}^{n-1} a_k w^k$, $B(w) = \sum_{k=0}^{n-1} b_k w^k$, w is any nth root of unity; and a_k , b_k are either 1 or -1. $P_n(w) = 2n$, for even n; and $P_n(w) = 2(n + \sum_{k=1}^{n-1} w^k)$, for odd n.

(4)
$$|C(s)|^2 + |D(s)|^2 = [n/2],$$

where $C(s) = \sum_{k=0}^{n-1} c_k s^k$, $D(s) = \sum_{k=0}^{n-1} d_k s^k$, s is any nontrivial *n*th root of unity (i.e. $s \neq 1$), $c_k = 1$ whenever $a_k = 1$, and $c_k = 0$ whenever $a_k = -1$, d_k is similarly defined by b_k , and [r] means the integral part of r.

Let $|C(s)|^2 = \sum_{k=0}^{n-1} p_k s^k$, $|D(s)|^2 = \sum_{k=0}^{n-1} q_k s^k$. Then

(5)
$$|C(s)|^2 + |D(s)|^2 = \sum_{k=0}^{n-1} (p_k + q_k) s^k.$$

Consequently, the right-hand side of (5) is equal to [n/2], if $p_k + q_k = r_n$, for each $k, 1 \le k \le [n/2]$, where $r_n = (p^2 + q^2 - p - q)/(n - 1)$, $p = p_0$ and $q = q_0$ are, respectively, the number of +1's in each row of matrices A and B.

The following maximal matrices M_{2n} with the corresponding C(s) and D(s) have been obtained for n = 21, 33, and 26, by matching two finite sequences (p_k) and (q_k) such that $p_k + q_k = r_n$, for each k, $1 \le k \le \lfloor n/2 \rfloor$. Let $C(s) = \sum_k s^k$, $k \in C$, and $D(s) = \sum_k s^k$, $k \in D$; $s^n = 1$, where s is a nontrivial *n*th root of unity. Then we have the following C and D in Table I for n = 21.

C	D
0, 1, 3, 6, 8, 12	0, 1, 2, 3, 4, 8, 11, 12, 16, 18
0, 1, 2, 4, 11, 17	0, 1, 2, 3, 6, 8, 10, 11, 15, 18
0, 1, 4, 10, 15, 17	0, 1, 2, 3, 4, 5, 9, 11, 14, 17
0, 1, 5, 10, 13, 15	0, 1, 2, 3, 4, 5, 8, 11, 15, 17
	or 0, 1, 2, 3, 4, 6, 7, 10, 14, 16
0, 1, 3, 7, 10, 15 or	0, 1, 2, 3, 4, 6, 8, 11, 12, 16
0, 1, 4, 7, 14, 16	
0, 1, 4, 8, 14, 16	0, 1, 2, 3, 4, 6, 7, 11, 13, 16
0, 1, 4, 8, 10, 16	0, 1, 2, 3, 4, 6, 7, 11, 14, 16

TABLE I

For example, (+1, -1) matrices A, corresponding to C(s) with $C = \{0, 1, 3, 6, 8, 12\}$, can be obtained for $s = w^k$, $w = \exp(2\pi i/21)$, if k is relatively prime to 21. These matrices A are listed in Table II, where + stands for + 1 and - for -1.

TABLE II

k	First row of $(+1, -1)$ -matrix A
1	++-++-++
2	+-++++
4	+++ -+++
5	+ ++ +++ -
8	++-++-++
10	++ + +-++

For n = 33, we have $C = \{0, 1, 2, 3, 7, 8, 11, 13, 15, 18, 27, 30\}$ and $D = \{0, 1, 2, 3, 5, 8, 12, 15, 16, 17, 21, 25, 27\}$.

When n is even, M_{2n} is an H-matrix and for n = 26, we have $C = \{0, 1, 2, 5, 7, 8, 11, 16, 19, 21\}$ and $D = \{0, 1, 2, 3, 4, 5, 9, 12, 16, 18, 22\}$. By applying Theorem 1 of [5] once, we obtain (*)-type H-matrices of order 104, i.e. for n = 52, we have $C = \{0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 14, 16, 19, 22, 25, 32, 33, 37, 38, 42, 45\}$ and $D = \{0, 2, 4, 10, 13, 14, 15, 16, 17, 21, 22, 23, 27, 29, 31, 32, 35, 38, 39, 41, 42, 43, 47, 49, 51\}$; or $C = \{0, 1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 16, 17, 21, 22, 29, 32, 35, 38, 42, 43, 45, 47, 49, 51\}$ and $D = \{0, 2, 3, 4, 5, 7, 10, 11, 13, 14, 15, 16, 19, 22, 23, 25, 27, 31, 32, 33, 37, 38, 39, 41, 42\}$. By applying the above theorem n times, we obtain (*)-type H-matrices of order 52.2^n .

Other (*)-type H-matrices M_{52} with the corresponding C and D are found as follows:

 $C = \{0, 1, 2, 3, 4, 7, 10, 15, 17, 21\}, D = \{0, 1, 2, 4, 6, 7, 10, 11, 15, 18, 20\};$ or

 $C = \{0, 1, 2, 3, 4, 7, 9, 12, 16, 20\}, D = \{0, 1, 2, 4, 6, 12, 13, 17, 18, 20, 23\};$ or

$$C = \{0, 1, 2, 3, 5, 8, 12, 13, 16, 22\}, D = \{0, 1, 3, 4, 6, 8, 10, 12, 13, 18, 19\}.$$

A complex H-matrix of order n is an $n \times n$ matrix γ whose entries are ± 1 or $\pm i$ such that $\gamma \overline{\gamma}^T = nI_n$, where $\overline{\gamma}$ is the complex conjugate of γ . It should be noted that existence of a (*)-type H-matrix of order 2n with symmetric circulant $n \times n$ submatrices A and B implies existence of a complex symmetric circulant $n \times n$ H-matrix $\gamma = \alpha + i\beta$, where $\alpha = (A + B)/2$ and $\beta = (A - B)/2$. Consequently, no (*)-type H-matrices of order 2n with symmetric submatrices A and B exist when $n = 2p^m$ or $n = 2^k$ for k > 4, where p is an odd prime; m and k positive integers (see Theorem 1 of [3]).

Also we have

THEOREM. No (*)-type H-matrix of order 36 exists regardless of symmetry in submatrices A and B.

Suppose on the contrary such a (*)-type *H*-matrix exists. Let $C(s) = C_0(s^2) + sC_1(s^2)$ and $D(s) = D_0(s^2) + sD_1(s^2)$ be the corresponding polynomials of the *H*-matrix

satisfying the condition (4). Then -s is also an 18th root of unity and $C(-s) = C_0(s^2) - sC_1(s^2)$ and $D(-s) = D_0(s^2) - sD_1(s^2)$.

Since $|B(s)|^2 = B(s)B(s^{-1})$ and $|B(-s)|^2 = B(-s)B(-s^{-1})$ for B(s) = C(s) or D(s), we have for $s \neq \pm 1$,

$$18 = |C(s)|^2 + |D(s)|^2 + |C(-s)|^2 + |D(-s)|^2$$

= 2(|C_0(t)|^2 + |C_1(t)|^2 + |D_0(t)|^2 + |D_1(t)|^2),

where $t = s^2$, a nontrivial 9th root of unity. Consequently, we have

(6)
$$|C_0(t)|^2 + |C_1(t)|^2 + |D_0(t)|^2 + |D_1(t)|^2 = 9.$$

By setting s = -1 in (4), we have

(7)
$$C(-1)^2 + D(-1)^2 = 9.$$

Since $C(-1) = C_0(1) - C_1(1)$ and $D(-1) = D_0(1) - D_1(1)$ are integers, without loss of generality, we can assume that $C(-1)^2 = 0$ and $D(-1)^2 = 9$, from the condition (7). Consequently, $C_0(t)$ and $C_1(t)$ must each have three nonvanishing terms in t, and one of $D_k(t)$ must have three terms in t and the other $D_j(t)$ six terms, where k = 0 or $1, j \neq k$. And $D'_j(t) = -D_j(t) = \sum_{i=0}^{8} t^k - D_j(t)$ must have three terms in t.

When $t = \mathbf{w}^k$, $\mathbf{w} = \exp(2\pi i/3)$, k = 1 or 2: $|B_k(\mathbf{w})|$, where B = C or D, k = 1 or 0, can only take the value 0, $\sqrt{3}$, or 3. This is because $B_k(\mathbf{w})$ is of the form: $1 + \mathbf{w} + \mathbf{w}^2$, or $\pm (2 + \mathbf{w}^n)\mathbf{w}^m$, where n, m = 0, 1, or 2 and only $D_i(\mathbf{w}) = -D'_i(\mathbf{w})$ has -sign.

There are only two possibilities for $|B_k(\mathbf{w})|$'s to satisfy the condition (6): Case 1, three of them must be equal to $\sqrt{3}$ and the other one 0; or Case 2, one of them must be 3 and the other three 0.

For Case 1, without loss of generality, let $|C_k(\mathbf{w})| = 0$, then $|C(\mathbf{w})| = |C_j(\mathbf{w}^2)| = |D_h(\mathbf{w})| = \sqrt{3}$, where k = 0 or 1; $j \neq k$; and j, h = 0 or 1. Also,

$$\begin{aligned} |D(\mathbf{w})| &= |D_0(\mathbf{w}^2) + wD_1(\mathbf{w}^2)| \\ &= |\mp (2 + \mathbf{w}^{2k})\mathbf{w}^{2k} \pm \mathbf{w}(2 + \mathbf{w}^{2m})\mathbf{w}^{2n}| = |2 + \mathbf{w}^{2k} - (2 + \mathbf{w}^{2m})\mathbf{w}^{2q+1}|, \end{aligned}$$

where k, m = 1 or 2; h, n = 0, 1, or 2; and q = n - h, can only take the value $0, \sqrt{3}$, or 3.* This is because $2 + \mathbf{w}^{2k} - (2 + \mathbf{w}^{2m})\mathbf{w}^{2q+1}$ can be reduced to 0 or $\pm (2 + \mathbf{w}^n)\mathbf{w}^m$, where n, m = 0, 1, or 2.* Consequently, the condition (4) cannot be satisfied. When $|D_h(\mathbf{w})| = 0$, $|D(\mathbf{w})| = |D_m(\mathbf{w}^2)| = |C_n(\mathbf{w})| = \sqrt{3}$, where h = 0 or 1; $h \neq m$; and m, n = 0 or 1. Also, $|C(\mathbf{w})| = |C_0(\mathbf{w}^2) + \mathbf{w}C_1(\mathbf{w}^2)| = |2 + \mathbf{w}^{2k} + (2 + \mathbf{w}^{2m})\mathbf{w}^{2q+1}|$ can only take the value $0, \sqrt{3}$ or 3. Therefore, the condition (4) cannot be satisfied.

For Case 2, without loss of generality, let $|C_k(\mathbf{w})| = 3$ then $|C_j(\mathbf{w})| = |D_h(\mathbf{w})| = 0$, where k = 0 or 1; $j \neq k$; and j, h = 0 or 1. Consequently, for $t \neq \mathbf{w}^r$ (r = 0, 1, or 2) $C_k(t)$ must be of the form $t^n(1 + t^3 + t^6)$ and the other three of the form $\pm t^m u(t^q)$, where $u(t) = 1 + t + t^2$, $q \neq 3 \pmod{9}$.

For nonnegative integers a, b, c, such that a + b + c = 3,

151

^{*}Excluding the case $|D(\mathbf{w})| > 3$.

(8)

$$\begin{aligned} a|u(t)|^2 + b|u(t^2)|^2 + c|u(t^4)|^2 \\ &= 3(a+b+c) + (2a+c)t_1 + (2b+a)t_2 + (2c+b)t_4 \end{aligned}$$

where $t_k = t^k + t^{-k}$, the condition (8) holds for any t, a 9th root of unity which is not a 3rd root of unity. From now on let t be such a 9th root of unity, i.e. $t \neq \mathbf{w}^k$.

Since there are only three distinct $|u(t^r)|$'s for $r \neq 3 \pmod{9}$, i.e. |u(t)|, $|u(t^2)|$, and $|u(t^4)|$, from the conditions (6) and (8), one of $|C_j(t)|$ and $|D_h(t)|$ must be equal to |u(t)| and the other two $|u(t^2)|$ and $|u(t^4)|$. Let $|C_j(t)| = |u(t)|$; then |C(t)| = $|C_j(t^2)| = |u(t^2)|$ and $|D(t)| = |D_0(t^2) + tD_1(t^2)| = |u(t^{2n}) - t^k u(t^{2m})|$, where $n \neq m$; $n, m = \pm 2$ or ± 4 ; k an integer (mod 9). Consequently, we have

(9)
$$|C(t)|^2 + |D(t)|^2 = 9 - P(n, m, k; t)$$

where

$$P(n, m, k; t) = t^{k} u(t^{2m}) u(t^{-2n}) + t^{-k} u(t^{-2m}) u(t^{2n})$$

= $\sum_{\alpha} t_{\alpha}, \quad \alpha \in \{k, k - 2n, k - 4n, k + 2m, k + 4m, k + 2(m - n), k + 4(m - n), k + 2m - 4n, k + 4m - 2n\}.$

By using identities P(n, m, k; t) = P(m, n, -k; t) = P(-m, -n, k; t) = P(-n, -m, -k; t)and performing computations and simplifications, P(n, m, k; t) is found to take the value $t_2 - t_4$, $t_4 - t_1$, $3 + t_1 - t_2$, $-3 + t_2 - t_4$, or $2(t_4 - t_2)$ for $n \neq m$; $n, m = \pm 2$ or ± 4 ; $0 \le k \le 8$. Thus, the condition (4) cannot be satisfied since $P(n, m, k; t) \neq 0$ for t, any primitive 9th root of unity. Similarly, when $|D_h(\mathbf{w})| = 3$, we obtain $|C(t)|^2$ $+ |D(t)|^2 = 9 + P(n, m, k; t)$. Consequently, the condition (4) cannot be satisfied; and hence, no such (*)-type H-matrix of order 36 exists.

Since existence of Golay complementary sequences (a_k) , (b_k) , $0 \le k \le n-1$, of length *n* (see [6]) implies existence of a (*)-type *H*-matrix of order 2*n* with the corresponding $A(w) = \sum a_k w^k$ and $B(w) = \sum b_k w^k$ satisfying the condition (3), non-existence of Golay complementary sequences of length 18 is derived from nonexistence of a (*)-type *H*-matrix of order 36.

Acknowledgment. I wish to thank the referee for comments and recommendations concerning nonexistence proof of a (*)-type *H*-matrix of order 36 and references to Golay complementary sequences.

Department of Mathematics SUNY, College at Oneonta Oneonta, New York 13820

2. J. BRENNER & L. CUMMINGS, "The Hadamard maximum determinant problem," Amer. Math. Monthly, v. 79, 1972, pp. 626–630. MR 46 #190.

152

^{1.} H. EHLICH, "Determinantenabschätzungen für binäre Matrizen," *Math. Z.*, v. 83, 1964, pp. 123–132. MR 28 #4003.

^{3.} R. J. TURYN, "Complex Hadamard matrices," in *Combinatorial Structures and Their Applications* (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), Gordon and Breach, New York, 1970, pp. 435-437. MR **42** #5821.

^{4.} C. H. YANG, "On designs of maximal (+1, -1)-matrices of order $n \equiv 2 \pmod{4}$. II," *Math. Comp.*, v. 23, 1969, pp. 201-205.

5. C. H. YANG, "On Hadamard matrices constructible by circulant submatrices," Math. Comp., v. 25, 1971, pp. 181-186. MR 44 #5235.

6. M. J. E. GOLAY, "Complementary series," IRE Trans. Information Theory, v. IT-7, 1961, pp. 82-87. MR 23 #A3096.

7. M. J. E. GOLAY, "Note on complementary series," Proc. IRE, v. 50, 1962, p. 84.

8. R. J. TURYN, "Hadamard matrices, Baumer-Hall units, four symbol sequences, pulse compression and surface wave encodings," J. Combinatorial Theory Ser. A, v. 16, 1974, pp. 313-333.

9. S. JAUREGUI, JR., "Complementary sequences of length 26," IRE Trans. Information Theory, v. IT-8, 1962, p. 323.