Maximal Binary Matrices and Sum of Two Squares

By C. H. Yang

Abstract

A maximal ($+1,-1$)-matrix of order 66 is constructed by a method of matching two finite sequences. This method also produced many new designs for maximal ($+1,-1$)-matrices of order 42 and new designs for a family of H-matrices of order 26.2^{n}. A nonexistence proof for a (*)-type H-matrix of order 36, consequently for Golay complementary sequences of length 18 , is also given.

Let M be a $2 n \times 2 n(+1,-1)$-matrix, then the absolute value of $\operatorname{det} M$ is equal to or less than $\mu_{2 n}$, where $\mu_{2 n}=(2 n)^{n}$, if n is even; and $\mu_{2 n}=2^{n}(2 n-1)(n-1)^{n-1}$, if n is odd (see [1], [2] and their references).

When n is even and the absolute value of $\operatorname{det} M$ is equal to $\mu_{2 n}$, then the matrix M is called a nontrivial Hadamard matrix or H-matrix. Another characterization of an H-matrix M of order m is that it satisfies $M M^{T}=m I_{m}$, where I_{m} is the $m \times m$ identity matrix, T indicates the transposed matrix. (m must be equal to 1,2 , or $4 n$.)

A sufficient condition for $(+1,-1)$-matrix M of order $2 n$ being maximal is that the following condition holds:

$$
M M^{T}=\left[\begin{array}{ll}
P_{n} & 0 \tag{1}\\
0 & P_{n}
\end{array}\right]
$$

where $P_{n}=2 n I_{n}$, when n is even (i.e. when M is an H-matrix); and $P_{n}=(2 n-2) I_{n}+$ $2 J_{n}$, when n is odd, J_{n} is the $n \times n$ matrix whose every entry is 1 .

When n is odd, such maximal $(+1,-1)$-matrices $M_{2 n}$ satisfying the condition (1) have been known for $1 \leqslant n \leqslant 31$, except $n=11,17$, and 29 (see [1], [2], and [4]). Such maximal matrices $M_{2 n}$ can be constructed by the following standard form:

$$
M_{2 n}=\left[\begin{array}{ll}
A & B \tag{*}\\
-B^{T} & A^{T}
\end{array}\right]
$$

where A and B are $n \times n$ circulant matrices with entries 1 or -1 .
For maximal matrices $M_{2 n}$ of type (*), the condition (1) is equivalent to

$$
\begin{equation*}
A A^{T}+B B^{T}=P_{n} \tag{2}
\end{equation*}
$$

Let $\left(a_{k}\right)$ and $\left(b_{k}\right), \quad 0 \leqslant k \leqslant n-1$, be, respectively, the first row entries of matrices A and B, then the condition (2) is also equivalent to each of the following conditions (3) and (4) (see [4], [5]).

$$
\begin{equation*}
|A(w)|^{2}+|B(w)|^{2}=P_{n}(w) \tag{3}
\end{equation*}
$$

where $A(w)=\sum_{k=0}^{n-1} a_{k} w^{k}, B(w)=\Sigma_{k=0}^{n-1} b_{k} w^{k}, w$ is any nth root of unity; and a_{k}, b_{k} are either 1 or $-1 . \quad P_{n}(w)=2 n$, for even n; and $P_{n}(w)=2\left(n+\sum_{k=1}^{n-1} w^{k}\right)$, for odd n.

$$
\begin{equation*}
|C(s)|^{2}+|D(s)|^{2}=[n / 2] \tag{4}
\end{equation*}
$$

where $C(s)=\Sigma_{k=0}^{n-1} c_{k} s^{k}, D(s)=\Sigma_{k=0}^{n-1} d_{k} s^{k}, s$ is any nontrivial nth root of unity (i.e. $s \neq 1$), $c_{k}=1$ whenever $a_{k}=1$, and $c_{k}=0$ whenever $a_{k}=-1, d_{k}$ is similarly defined by b_{k}, and $[r]$ means the integral part of r.

Let $|C(s)|^{2}=\Sigma_{k=0}^{n-1} p_{k} s^{k},|D(s)|^{2}=\Sigma_{k=0}^{n-1} q_{k} s^{k}$. Then

$$
\begin{equation*}
|C(s)|^{2}+|D(s)|^{2}=\sum_{k=0}^{n-1}\left(p_{k}+q_{k}\right) s^{k} \tag{5}
\end{equation*}
$$

Consequently, the right-hand side of (5) is equal to [$n / 2$], if $p_{k}+q_{k}=r_{n}$, for each $k, 1 \leqslant k \leqslant[n / 2]$, where $r_{n}=\left(p^{2}+q^{2}-p-q\right) /(n-1), p=p_{0}$ and $q=q_{0}$ are, respectively, the number of +1 's in each row of matrices A and B.

The following maximal matrices $M_{2 n}$ with the corresponding $C(s)$ and $D(s)$ have been obtained for $n=21,33$, and 26, by matching two finite sequences $\left(p_{k}\right)$ and $\left(q_{k}\right)$ such that $p_{k}+q_{k}=r_{n}$, for each $k, 1 \leqslant k \leqslant[n / 2]$. Let $C(s)=\Sigma_{k} s^{k}, k \in C$, and $D(s)=\Sigma_{k} s^{k}, k \in D ; s^{n}=1$, where s is a nontrivial nth root of unity. Then we have the following C and D in Table I for $n=21$.

Table I

C	D
$0,1,3,6,8,12$	$0,1,2,3,4,8,11,12,16,18$
$0,1,2,4,11,17$	$0,1,2,3,6,8,10,11,15,18$
$0,1,4,10,15,17$	$0,1,2,3,4,5,9,11,14,17$
$0,1,5,10,13,15$	$0,1,2,3,4,5,8,11,15,17$
	or $0,1,2,3,4,6,7,10,14,16$
$0,1,3,7,10,15$	$0,1,2,3,4,6,8,11,12,16$
or	
$0,1,4,7,14,16$	
$0,1,4,8,14,16$	$0,1,2,3,4,6,7,11,13,16$
$0,1,4,8,10,16$	$0,1,2,3,4,6,7,11,14,16$

For example, $(+1,-1)$ matrices A, corresponding to $C(s)$ with $C=\{0,1,3,6$, $8,12\}$, can be obtained for $s=w^{k}, w=\exp (2 \pi i / 21)$, if k is relatively prime to 21 . These matrices A are listed in Table II, where + stands for +1 and - for -1 .

Table II

k	First row of $(+1,-1)$ matrix A				
1	++-+-	-+-+-	--+--	-----	-
2	+-++-	-+---	--+--	-+---	-
4	+--++	-+---	-++--	-----	-
5	+----	+---+	-----	+--++	-
8	++-+-	-+-+-	--+--	-----	-
10	+----	----+	+----	+-++-	-

For $n=33$, we have $C=\{0,1,2,3,7,8,11,13,15,18,27,30\}$ and $D=\{0,1,2$, $3,5,8,12,15,16,17,21,25,27\}$.

When n is even, $M_{2 n}$ is an H-matrix and for $n=26$, we have $C=\{0,1,2,5,7$, $8,11,16,19,21\}$ and $D=\{0,1,2,3,4,5,9,12,16,18,22\}$. By applying Theorem 1 of [5] once, we obtain (*)-type H-matrices of order 104, i.e. for $n=52$, we have $C=\{0,1,2,3,4,5,7,9,10,11,14,16,19,22,25,32,33,37,38,42,45\}$ and $D=\{0,2,4,10,13,14,15,16,17,21,22,23,27,29,31,32,35,38,39,41,42$, $43,47,49,51\}$; or $C=\{0,1,2,4,9,10,14,16,17,21,22,29,32,35,38,42,43$, $45,47,49,51\}$ and $D=\{0,2,3,4,5,7,10,11,13,14,15,16,19,22,23,25,27$, $31,32,33,37,38,39,41,42\}$. By applying the above theorem n times, we obtain (*)-type H-matrices of order 52.2^{n}.

Other (*)-type H-matrices M_{52} with the corresponding C and D are found as follows:

$$
C=\{0,1,2,3,4,7,10,15,17,21\}, \quad D=\{0,1,2,4,6,7,10,11,15,18,20\} ;
$$

or

$$
C=\{0,1,2,3,4,7,9,12,16,20\}, \quad D=\{0,1,2,4,6,12,13,17,18,20,23\} ;
$$

or

$$
C=\{0,1,2,3,5,8,12,13,16,22\}, \quad D=\{0,1,3,4,6,8,10,12,13,18,19\}
$$

A complex H-matrix of order n is an $n \times n$ matrix γ whose entries are ± 1 or $\pm i$ such that $\gamma \bar{\gamma}^{T}=n I_{n}$, where $\bar{\gamma}$ is the complex conjugate of γ. It should be noted that existence of a (*)-type H-matrix of order $2 n$ with symmetric circulant $n \times n$ submatrices A and B implies existence of a complex symmetric circulant $n \times n H$-matrix $\gamma=\alpha+$ $i \beta$, where $\alpha=(A+B) / 2$ and $\beta=(A-B) / 2$. Consequently, no (*)-type H-matrices of order $2 n$ with symmetric submatrices A and B exist when $n=2 p^{m}$ or $n=2^{k}$ for $k>4$, where p is an odd prime; m and k positive integers (see Theorem 1 of [3]).

Also we have
Theorem. No (*)-type H-matrix of order 36 exists regardless of symmetry in submatrices A and B.

Suppose on the contrary such a (*)-type H-matrix exists. Let $C(s)=C_{0}\left(s^{2}\right)+$ $s C_{1}\left(s^{2}\right)$ and $D(s)=D_{0}\left(s^{2}\right)+s D_{1}\left(s^{2}\right)$ be the corresponding polynomials of the H-matrix
satisfying the condition (4). Then $-s$ is also an 18 th root of unity and $C(-s)=C_{0}\left(s^{2}\right)$ $-s C_{1}\left(s^{2}\right)$ and $D(-s)=D_{0}\left(s^{2}\right)-s D_{1}\left(s^{2}\right)$.

Since $|B(s)|^{2}=B(s) B\left(s^{-1}\right)$ and $|B(-s)|^{2}=B(-s) B\left(-s^{-1}\right)$ for $B(s)=C(s)$ or $D(s)$, we have for $s \neq \pm 1$,

$$
\begin{aligned}
18 & =|C(s)|^{2}+|D(s)|^{2}+|C(-s)|^{2}+|D(-s)|^{2} \\
& =2\left(\left|C_{0}(t)\right|^{2}+\left|C_{1}(t)\right|^{2}+\left|D_{0}(t)\right|^{2}+\left|D_{1}(t)\right|^{2}\right)
\end{aligned}
$$

where $t=s^{2}$, a nontrivial 9 th root of unity. Consequently, we have

$$
\begin{equation*}
\left|C_{0}(t)\right|^{2}+\left|C_{1}(t)\right|^{2}+\left|D_{0}(t)\right|^{2}+\left|D_{1}(t)\right|^{2}=9 \tag{6}
\end{equation*}
$$

By setting $s=-1$ in (4), we have

$$
\begin{equation*}
C(-1)^{2}+D(-1)^{2}=9 \tag{7}
\end{equation*}
$$

Since $C(-1)=C_{0}(1)-C_{1}(1)$ and $D(-1)=D_{0}(1)-D_{1}(1)$ are integers, without loss of generality, we can assume that $C(-1)^{2}=0$ and $D(-1)^{2}=9$, from the condition (7). Consequently, $C_{0}(t)$ and $C_{1}(t)$ must each have three nonvanishing terms in t, and one of $D_{k}(t)$ must have three terms in t and the other $D_{j}(t)$ six terms, where $k=0$ or $1, j \neq k$. And $D_{j}^{\prime}(t)=-D_{j}(t)=\Sigma_{0}^{8} t^{k}-D_{j}(t)$ must have three terms in t.

When $t=\mathbf{w}^{k}, \mathbf{w}=\exp (2 \pi i / 3), k=1$ or $2:\left|B_{k}(\mathbf{w})\right|$, where $B=C$ or $D, k=1$ or 0 , can only take the value $0, \sqrt{3}$, or 3 . This is because $B_{k}(w)$ is of the form: $1+\mathrm{w}+$ \mathbf{w}^{2}, or $\pm\left(2+\mathbf{w}^{n}\right) \mathbf{w}^{m}$, where $n, m=0,1$, or 2 and oniy $D_{j}(\mathrm{w})=-D_{j}^{\prime}(\mathrm{w})$ has - sign.

There are only two possibilities for $\left|B_{k}(\mathrm{w})\right|$'s to satisfy the condition (6): Case 1 , three of them must be equal to $\sqrt{3}$ and the other one 0 ; or Case 2 , one of them must be 3 and the other three 0 .

For Case 1, without loss of generality, let $\left|C_{k}(\mathrm{w})\right|=0$, then $|C(\mathrm{w})|=\left|C_{j}\left(\mathrm{w}^{2}\right)\right|=$ $\left|D_{h}(\mathrm{w})\right|=\sqrt{3}$, where $k=0$ or $1 ; j \neq k$; and $j, h=0$ or 1 . Also,

$$
\begin{aligned}
|D(\mathrm{w})| & =\left|D_{0}\left(\mathrm{w}^{2}\right)+\mathrm{w} D_{1}\left(\mathrm{w}^{2}\right)\right| \\
& =\left|\mp\left(2+\mathrm{w}^{2 k}\right) \mathrm{w}^{2 h} \pm \mathrm{w}\left(2+\mathrm{w}^{2 m}\right) \mathrm{w}^{2 n}\right|=\left|2+\mathrm{w}^{2 k}-\left(2+\mathrm{w}^{2 m}\right) \mathrm{w}^{2 q+1}\right|
\end{aligned}
$$

where $k, m=1$ or $2 ; h, n=0,1$, or 2 ; and $q=n-h$, can only take the value $0, \sqrt{3}$, or 3.* This is because $2+\mathbf{w}^{2 k}-\left(2+\mathbf{w}^{2 m}\right) \mathbf{w}^{2 q+1}$ can be reduced to 0 or $\pm\left(2+\mathbf{w}^{n}\right) \mathbf{w}^{m}$, where $n, m=0,1$, or 2.* Consequently, the condition (4) cannot be satisfied. When $\left|D_{h}(\mathrm{w})\right|=0,|D(\mathrm{w})|=\left|D_{m}\left(\mathrm{w}^{2}\right)\right|=\left|C_{n}(\mathrm{w})\right|=\sqrt{3}$, where $h=0$ or 1 ; $h \neq m$; and $m, n=0$ or 1. Also, $|C(\mathbf{w})|=\left|C_{0}\left(\mathbf{w}^{2}\right)+\mathrm{w} C_{1}\left(\mathrm{w}^{2}\right)\right|=\mid 2+\mathrm{w}^{2 k}+$ $\left(2+w^{2 m}\right) \mathbf{w}^{2 q+1} \mid$ can only take the value $0, \sqrt{3}$ or 3 . Therefore, the condition (4) cannot be satisfied.

For Case 2, without loss of generality, let $\left|C_{k}(\mathrm{w})\right|=3$ then $\left|C_{j}(\mathrm{w})\right|=\left|D_{h}(\mathrm{w})\right|=$ 0 , where $k=0$ or $1 ; j \neq k$; and $j, h=0$ or 1 . Consequently, for $t \neq \mathbf{w}^{r} \quad(r=0,1$, or 2) $C_{k}(t)$ must be of the form $t^{n}\left(1+t^{3}+t^{6}\right)$ and the other three of the form $\pm t^{m} u\left(t^{q}\right)$, where $u(t)=1+t+t^{2}, q \not \equiv 3(\bmod 9)$.

For nonnegative integers a, b, c, such that $a+b+c=3$,

$$
\begin{align*}
& a|u(t)|^{2}+b\left|u\left(t^{2}\right)\right|^{2}+c\left|u\left(t^{4}\right)\right|^{2} \\
& \quad=3(a+b+c)+(2 a+c) t_{1}+(2 b+a) t_{2}+(2 c+b) t_{4} \tag{8}
\end{align*}
$$

where $t_{k}=t^{k}+t^{-k}$, the condition (8) holds for any t, a 9 th root of unity which is not a 3rd root of unity. From now on let t be such a 9 th root of unity, i.e. $t \neq \mathbf{w}^{k}$.

Since there are only three distinct $\left|u\left(t^{r}\right)\right|$'s for $r \not \equiv 3(\bmod 9)$, i.e. $|u(t)|,\left|u\left(t^{2}\right)\right|$, and $\left|u\left(t^{4}\right)\right|$, from the conditions (6) and (8), one of $\left|C_{j}(t)\right|$ and $\left|D_{h}(t)\right|$ must be equal to $|u(t)|$ and the other two $\left|u\left(t^{2}\right)\right|$ and $\left|u\left(t^{4}\right)\right|$. Let $\left|C_{j}(t)\right|=|u(t)|$; then $|C(t)|=$ $\left|C_{j}\left(t^{2}\right)\right|=\left|u\left(t^{2}\right)\right|$ and $|D(t)|=\left|D_{0}\left(t^{2}\right)+t D_{1}\left(t^{2}\right)\right|=\left|u\left(t^{2 n}\right)-t^{k} u\left(t^{2 m}\right)\right|$, where $n \neq m$; $n, m= \pm 2$ or $\pm 4 ; k$ an integer $(\bmod 9)$. Consequently, we have

$$
\begin{equation*}
|C(t)|^{2}+|D(t)|^{2}=9-P(n, m, k ; t) \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
P(n, m, k ; t)= & t^{k} u\left(t^{2 m}\right) u\left(t^{-2 n}\right)+t^{-k} u\left(t^{-2 m}\right) u\left(t^{2 n}\right) \\
= & \sum_{\alpha} t_{\alpha}, \quad \alpha \in\{k, k-2 n, k-4 n, k+2 m, k+4 m, k+2(m-n), \\
& k+4(m-n), k+2 m-4 n, k+4 m-2 n\} .
\end{aligned}
$$

By using identities $P(n, m, k ; t)=P(m, n,-k ; t)=P(-m,-n, k ; t)=P(-n,-m,-k ; t)$ and performing computations and simplifications, $P(n, m, k ; t)$ is found to take the value $t_{2}-t_{4}, t_{4}-t_{1}, 3+t_{1}-t_{2},-3+t_{2}-t_{4}$, or $2\left(t_{4}-t_{2}\right)$ for $n \neq m ; n, m= \pm 2$ or $\pm 4 ; 0 \leqslant k \leqslant 8$. Thus, the condition (4) cannot be satisfied since $P(n, m, k ; t) \neq 0$ for t, any primitive 9 th root of unity. Similarly, when $\left|D_{h}(\mathrm{w})\right|=3$, we obtain $|C(t)|^{2}$ $+|D(t)|^{2}=9+P(n, m, k ; t)$. Consequently, the condition (4) cannot be satisfied; and hence, no such (*)-type H-matrix of order 36 exists.

Since existence of Golay complementary sequences $\left(a_{k}\right),\left(b_{k}\right), 0 \leqslant k \leqslant n-1$, of length n (see [6]) implies existence of a (*)-type H-matrix of order $2 n$ with the corresponding $A(w)=\Sigma a_{k} w^{k}$ and $B(w)=\Sigma b_{k} w^{k}$ satisfying the condition (3), nonexistence of Golay complementary sequences of length 18 is derived from nonexistence of a (*)-type H-matrix of order 36.

Acknowledgment. I wish to thank the referee for comments and recommendations concerning nonexistence proof of a (*)-type H-matrix of order 36 and references to Golay complementary sequences.

Department of Mathematics
SUNY, College at Oneonta
Oneonta, New York 13820

1. H. EHLICH, "Determinantenabschätzungen für binäre Matrizen," Math. Z., v. 83, 1964, pp. 123-132. MR 28 \#4003.
\rightarrow J. BRENNER \& L. CUMMINGS, "The Hadamard maximum determinant problem," Amer. Math. Monthly, v. 79, 1972, pp. 626-630. MR 46 \#190.
2. R. J. TURYN, "Complex Hadamard matrices,' in Combinatorial Structures and Their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), Gordon and Breach, New York, 1970, pp. 435-437. MR 42 \#5821.
3. C. H. YANG, "On designs of maximal $(+1,-1)$-matrices of order $n \equiv 2(\bmod 4)$. II," Math. Comp., v. 23, 1969, pp. 201-205.
4. C. H. YANG, "On Hadamard matrices constructible by circulant submatrices," Math. Comp., v. 25, 1971, pp. 181-186. MR 44 \#5235.
5. M. J. E. GOLAY, "Complementary series," IRE Trans. Information Theory, v. IT-7, 1961, pp. 82-87. MR 23 \#A3096.
6. M. J. E. GOLAY, "Note on complementary series," Proc. IRE, v. 50, 1962, p. 84.
7. R. J. TURYN, "Hadamard matrices, Baumer-Hall units, four symbol sequences, pulse compression and surface wave encodings," J. Combinatorial Theory Ser. A, v. 16, 1974, pp. 313-333.
8. S. JAUREGUI, JR., "Complementary sequences of length 26," IRE Trans. Information Theory, v. IT-8, 1962 , p. 323.
